
1

PRACTICAL EXERCISE IN R

Description of dataset for practical exercises

The dataset for the practical exercise is derived from the ‘Colorado study’, which

evaluates cost effectiveness of different reimbursement mechanisms for Medicaid

cases with severe mental illness.1 The study compares fee for service (FFS) with two

different capitation methods. In one capitation model, services are provided directly

(direct capitation or DC) by not-for-profit community mental health centres. In these

practicals, we focus on this form of capitation and compare it to FFS. In FFS

physicians are reimbursed according to how much of a service they provide and in

capitation method physicians are reimbursed according to the number of patients

registered.

The practical exercises are based on a subset of cases whose medical bill is

reimbursed by either FFS (n=114) or DC (n=155). Note that the sample and (hence

the results) have been deliberately changed from the published paper.

For each method the decision problem you should consider is whether DC is cost-

effective compared to FFS for Medicaid patients with severe mental health illness.

The dataset is provided in the zip folder emailed to your previously.

We also provide an e-copy of these notes in this subfolder that you can copy and

paste commands from.

Please note that while these data have been anonymised, permission for their

use is only for educational purposes. Under no circumstances should they be

used for research or other purposes.

Variable description for dataset

Variable name Description

Id Study id

Key Baseline measures
W1paid Cost prior to intervention, continuous

W1qaly QALY prior to intervention, continuous

W1schiz Schizophrenia, 1=yes; 0=no

W1bipolar Bipolar, 1=yes; 0=no

W1age Age (continuous)

W1male 0=women; 1=men

W1highcost Previously high cost (0=no; 1=yes)

W1lowcost Previously low cost (0=no; 1=yes)

1Grieve et al. 2008. “Evaluation of health care programs by combining cost with quality of life
measures: a case study comparing capitation and fee for services.” Health Services Research
43(4):1204-22.

2

W1use Previously used any service (0=no; 1=yes)

W1nonwhite Ethnicity, 1= white, 0=other

W1phs Physical health at baseline, continuous

W1mhs Mental health at baseline, continuous

W1gf Global functioning at baseline, continuous

age2 Age squared

age3 Age cubed

priorcost2 W1paid squared

priorcost3 W1paid cubed

priorqaly2 W1qaly squared

priorqaly3 W1qaly cubed

Key outcomes
totalcost Total discounted cost in first and second follow-up period

totalqaly Total discounted QALY in first and second follow-up period

Treatment variable
treated Treatment indicator =0 for FFS, 1 for DC

3

Part 1: Propensity score matching with R

In this exercise, we will perform propensity score matching in R using the Matching

package.

Aim of the exercise

 Learn how to estimate a propensity score in R

 Consider how to assess the specification of the propensity score by checking

covariate balance, using a broad range of balance statistics

Before opening R, copy the data file notforprofit2013.dta and save it in your

own drive (e.g., desktop or external drive). Also save the R script from the same folder,

named Practical.R. Using this script will make it easier for you to type some

longer commands.

Now open R and change the working directory to your own drive (e.g., home directory

or external drive) using for example the following command:

setwd("H:/Myname/Myfolder/")

(tip: in R, the file path contains a forward slash / not a backward slash like for

example in Stata!).

Alternatively, you can manually set your working directory by going into the main R

menu and choosing File > Change dir.

You can open the script for the R code by going to: File-> Open script and choosing

the working directory you set previously. You can modify this script file, or can also

create your own script file by choosing File > New script.

First, you need to ensure that the packages, “rgenoud” and “Matching” are

installed before loading them. This can be done using the drop-down menu

Packages > Install packages in R. To do this, you need to be connected to the

internet, select a local “mirror”, and look for the packages “rgenoud ” and

“Matching”. It would be good to do this in advance of the short course (tip: in

R, the choice of lower versus upper case DOES matter!).

4

Step 1: Read the data in R

Read the data (in Stata format) notforprofit2013.dta into the data frame,

dta3 <- read.dta(file = "notforprofit2013.dta")

dta3 <- as.data.frame(dta3)

 and load the necessary libraries:

library(foreign)

library(boot)

library(rgenoud)

library(Matching)

Before starting the propensity score matching, you can familiarise yourself with the

requisite matching function, using the help page in R. Type the following:

?Match()

Step 2: Estimate the propensity score

Estimate the propensity score using a logistic regression. For now, we will add

potential confounders as linear terms. If you have time later, you can play around with

making the model more flexible, for example by adding nonlinear terms.

pscore <- glm(treated ~ W1male + W1nonwhite + W1highcost + W1lowcost

+ W1schiz + W1bipolar+ W1age + W1qaly + W1paid + W1phs + W1mhs +

W1gf + W1use, data = dta3, binomial(link = "logit"))

You can inspect the propensity score model by typing

summary(pscore)

Save the linear predictor of treatment assignment using the code

 pscore_est <- predict(pscore, data = dta3)

5

Append the predicted linear predictor of the propensity score (pscore_est) to the

existing variables in the data set (dta3):

dta3<- cbind(dta3, pscore_est)

and remove the object pscore_est, so that we don’t have duplicated objects (one

inside, and one outside of the dataframe dta3).

rm(pscore_est)

Step 3: Perform propensity score matching

Before conducting 1 to 1 nearest-neighbour propensity score matching with

replacement (default option), remember to attach your data frame (attach(dta3)).

This enables us to refer to a variable in the dataset by simply giving their name, e.g.

“treated”. (Alternatively, you can refer to the object as dta3$treated, and you don’t

need to attach).

The syntax for propensity score matching is:

attach(dta3)

m_ps1 <- Match(Tr = treated, X = pscore_est, estimand="ATT")

detach(dta3)

Remember to detach the dataset using detach(dta3).

Step 4: Assess balance

To assess the balance on covariates before and after matching both formal statistical

tests and graphical tools can be used.

The function MatchBalance allows us to check if the results of Match have achieved

balance on covariates by calculating four different sets of balance statistics. We would

like to assess the balance on the following confounders: W1age, W1qaly, W1paid,

W1nonwhite, W1schiz and W1bipolar.

The syntax for MatchBalance is:

set.seed(1122)

6

mb_ps1 <-MatchBalance(treated ~ W1age + W1qaly + W1paid + W1nonwhite

+ W1schiz + W1bipolar, match.out = m_ps1, data = dta3, nboots = 500)

Note that we set the seed prior to MatchBalance in order to obtain the exact same

results every time MatchBalance is used. nboots is the number of bootstrap

samples to be run. Bootstrapping is highly recommended because the bootstrapped

Kolmogorov-Smirnov (KS) test provides correct coverage even when the distributions

being compared are not continuous. At least 500 nboots are recommended for

publication quality p-values. If you set nboots to zero then bootstrap resampling is

not undertaken.

Which covariates are imbalanced before matching? Which after matching? Compare

the p-value for the t-test with that for the KS test for W1qaly. What do you notice?

The QQ plot is a graphical aid that can be used to compare the distribution of a

potential confounder variable between the control and the treatment group.

Empirical-QQ (eQQ) plots of W1qaly before and after matching can be produced by

using the qqplot function in the following way:

attach(dta3)

qqplot(W1qaly[treated==0], W1qaly[treated==1])

detach(dta3)

However to get nicer plots we can use some options as shown below:

attach(dta3)

par(mfrow = c(1,2), las=2, oma=c(8,0.5,8,0.5))

qqplot(W1qaly[treated==0], W1qaly[treated==1], main="Before

matching", ylab = "Treatment observations", xlab="Control

observations", ylim=c(min(W1qaly[treated==1],

W1qaly[m_ps1$index.treated]), max(W1qaly[treated==1],

W1qaly[m_ps1$index.treated])),xlim=c(min(W1qaly[treated==0],

W1qaly[m_ps1$index.control]), max(W1qaly[treated==0],

W1qaly[m_ps1$index.control])))

abline(coef=c(0,1))

qqplot(W1qaly[m_ps1$index.control], W1qaly[m_ps1$index.treated],

main="After matching", ylab="Treatment observations", xlab="Control

observations", ylim=c(min(W1qaly[treated==1],

7

W1qaly[m_ps1$index.treated]), max(W1qaly[dta3$treated==1],

W1qaly[m_ps1$index.treated])),xlim=c(min(W1qaly[treated==0],

W1qaly[m_ps1$index.control]), max(W1qaly[treated==0],

W1qaly[m_ps1$index.control])))

abline(coef=c(0,1))

detach(dta3)

Note that par(mfrow = c(1,2), las = 2, oma=c(8,0.5,8,0.5)) allows us

to have 1x2 pictures on one plot. With ylim and xlim we make sure that the plots

before and after matching, are on the same scale.

Assess the balance for the squared and cubed terms of W1qaly (priorqaly2 and

priorqaly3) by including them in MatchBalance. What do you conclude?

Step 5: Estimate the ATT

Only once the covariate balance post matching has been judged sufficient, should

the estimated ATT be reported.

To estimate the ATT for totalcost after matching on the propensity score with

non-linear terms, the code is:

attach(dta3)

m_ps_cost <- Match(Y=totalcost, Tr=treated, X=pscore_est,

estimand="ATT")

summary(m_ps_cost, full=TRUE)

detach(dta3)

Now modify the above code to estimate the ATT for the same matched dataset for

totalqaly.

Step 6: Save and store the matched dataset

This part of code allows you to save and store the matched data:

match.ps.data <- rbind(dta3[m_ps1$index.treated,],

dta3[m_ps1$index.control,])

match.ps.data <- cbind(match.ps.data, weights=c(m_ps1$weights,

m_ps1$weights))

8

match.ps.data <- cbind(match.ps.data,

matchid=c(1:length(m_ps1$index.treated),1:length(m_ps1$index.control

)))

write.table(match.ps.data, file = "match.ps.data.csv", sep = ",",

col.names = NA, na="NA", qmethod = "double")

Note: The vectors index.treated and index.control store the original

observation number for the treated and control observation, in each matched pair.

An easy way to inspect the matched pairs is by binding these vectors together, with

the weight attached to each pair.

matchedpairs=cbind(m_ps1$index.treated

,m_ps1$index.control,m_ps1$weights)

Now type head(matchedpairs) to see the first elements of the vector, and

dim(matchedpairs) to check the dimensions of the matched data.

Notice that this dataset is longer (165 rows) than the number of treated observations

in the original dataset (n=155). The reason for this is that for certain treated

observations, more than one control observation can be matched, because they

have the same Pscore (tie). In this case, the default option in the Matching package

is not to break the tie, but to create more than one matched pairs. For example, the

1st (treated) observation is matched with the 97th and 144th (control) observations,

and both matched pairs are stored with a weight of 0.5.

You can verify that the weights add up to the original number of treated

observations, by typing:

sum(m_ps1$weights)

You can check how many of the original 114 control observations have been used in

the matching process, by typing:

length(unique(m_ps1$index.control))

You may want to save the output of the propensity score matching so that later

you can compare it to the Genetic Matching results. An easy way to do this is

by simply copying the text output, as well as the generated plots into a Word

document.

You can also save the R script file by moving the cursor to the “R editor”

window, and selecting File menu > Save as.

9

Part 2: Genetic Matching with R

In this exercise we will perform multivariate matching in R by using the Genetic

Matching algorithm, incorporated in the R package Matching.

Aim of the exercise

 Learn how to define those potential confounders we wish to achieve balance

on (BalanceMatrix);

 Perform Genetic Matching (GenMatch);

 Learn how to perform multivariate matching on potential confounders (X

matrix) (Match);

 Check covariate balance and compare the balance achieved with that from

propensity score matching;

 Estimate the treatment effects (point estimates and 95% CI), after Genetic

Matching.

By the end of the exercise you should be able to perform Genetic Matching and

interpret the results.

Step 1 Load data and libraries, estimate Pscore as before

Make sure that the dataset and the Matching(), foreign()and rgenoud() and

boot() libraries are loaded, as described previously. We will use the previously

estimated propensity score, pscore_est so make sure you re-create it and add it to

the dataset. (The script Practical.R repeats these steps.)

Before implementing GenMatch, you can familiarise yourself with the function, using

the help page. Type the following:

?GenMatch()

Step 2: Specify the X and BalanceMatrix matrices

Include in the X matrix the estimated linear predictor (pscore_est) obtained in

Part 1, and the following covariates: W1male, W1nonwhite, W1highcost,

W1lowcost, W1schiz, W1bipolar, W1use, W1age, W1qaly, W1paid,

W1phs, W1mhs, W1gf.

attach(dta3)

X <-cbind(pscore_est, W1male, W1nonwhite, W1highcost, W1lowcost,

W1schiz, W1bipolar, W1use, W1age, W1qaly, W1paid, W1phs, W1mhs,

W1gf)

10

For now, we include the same variables in the balance matrix as in the X matrix.

BalanceMatrix <- X

As we will later see, this does not have to be the case: the BalanceMatrix needs to

include terms we think are the most important to achieve good balance on. (Note: do

not use “detach” yet, as we carry on using the dataset in the next step.)

Step 3: Perform Genetic Matching and assess covariate balance

We first perform Genetic Matching, to obtain the Weight.matrix, which will then be

used in the multivariate matching to calculate distance between the matched pairs.

This step is the computationally intensive part of Genetic Matching. Call the function

GenMatch and save the output in the object gen1:

gen1 <- GenMatch(Tr = treated, X = X, BalanceMatrix = BalanceMatrix,

pop.size = 500, unif.seed=2233, int.seed=2233)

Note that we set the seed inside the function GenMatch in order to obtain the exact

same results every time GenMatch is used. While the recommended population size

(pop.size) is at least 1000, in order to keep computation time short, we set it to 500.

With this dataset, the algorithm will take less than two minutes to run.

In order to obtain the matched data, we perform the multivariate matching, using the

X matrix and the weights, obtained from the previous step. Again, we save the output

of the matching in an object, m_gm1. When calling this function, we need to reference

the output object of Genetic Matching (gen1), previously stored.

m_gm1 <- Match(Tr = treated, X = X, Weight.matrix = gen1, estimand =

"ATT")

Don’t forget to detach the data:

detach(dta3)

Note that the syntax for matching is the same as that used in the propensity score

matching, the only new element is the weight matrix (Weight.matrix). While the

GenMatch part calculated the weights (hence used more programming time), the

Match part created the matched datasets and calculated the treatment effects.

Assess the balance on covariates before and after matching by using the function

MatchBalance:

set.seed(1122)

mb_gm1 <- MatchBalance(treated ~ W1age + W1qaly + W1paid +

W1nonwhite + W1schiz + W1bipolar, match.out=m_gm1, data=dta3,

nboots=500)

11

Compare these results with those obtained with the propensity score matching in Part

1. What do you conclude?

Now use the qqplot function to visually assess the balance achieved on W1qaly:

par(mfrow = c(1,2), oma=c(8,0.5,8,0.5))

attach(dta3)

qqplot(W1qaly[treated==0], W1qaly[treated==1], main="Before

matching", ylab = "Treatment observations", xlab="Control

observations",

ylim=c(min(W1qaly[treated==1],W1qaly[m_gm1$index.treated]),

max(W1qaly[treated==1], W1qaly[m_gm1$index.treated])),

xlim=c(min(W1qaly[treated==0], W1qaly[m_gm1$index.control]),

max(W1qaly[treated==0], W1qaly[m_gm1$index.control])))

abline(coef=c(0,1))

qqplot(W1qaly[m_gm1$index.control],W1qaly[m_gm1$index.treated],

main="After matching", ylab="Treatment observations", xlab="Control

observations",

ylim=c(min(W1qaly[treated==1],W1qaly[m_gm1$index.treated]),

max(W1qaly[treated==1], W1qaly[m_gm1$index.treated])),

xlim=c(min(W1qaly[treated==0],W1qaly[m_gm1$index.control]),

max(W1qaly[treated==0], W1qaly[m_gm1$index.control])))

abline(coef=c(0,1))

detach(dta3)

Compare these plots with those obtained with the propensity score matching. What do

you conclude?

To assess the balance on the squared and cubed terms of W1qaly, add

priorqaly2 and priorqaly3 in MatchBalance. Then compare the KS test and

t-test for these non-linear terms with those of W1qaly. What do you notice?

Step 4: Estimate the ATT

Now we use the matched data obtained in the last step, and estimate the ATT.

12

attach(dta3)

m_gm1_cost <- Match(Y= totalcost,Tr=treated, X=X, Weight.matrix =

gen1, estimand = "ATT")

summary(m_gm1_cost)

detach(dta3)

Modify the above code to estimate the treatment effect for totalqaly.

Step 5: Save and store the matched dataset

This part of code allows you to save and store the matched data:

match.gn.data <- rbind(dta3[m_gm1$index.treated,],

dta3[m_gm1$index.control,])

match.gn.data <- cbind(match.gn.data, weights=c(m_gm1$weights,

m_gm1$weights))

match.gn.data <- cbind(match.gn.data,

matchid=c(1:length(m_gm1$index.treated),1:length(m_gm1$index.control

)))

write.table(match.gn.data, file = "match.gn.data.csv", sep = ",",

col.names = NA, na="NA", qmethod = "double")

You’re done! If you have time, think through any further analyses that you think are

warranted.

