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PRACTICAL EXERCISE IN R 

Description of dataset for practical exercises 

The dataset for the practical exercise is derived from the ‘Colorado study’, which 

evaluates cost effectiveness of different reimbursement mechanisms for Medicaid 

cases with severe mental illness.1 The study compares fee for service (FFS) with two 

different capitation methods. In one capitation model, services are provided directly 

(direct capitation or DC) by not-for-profit community mental health centres. In these 

practicals, we focus on this form of capitation and compare it to FFS. In FFS 

physicians are reimbursed according to how much of a service they provide and in 

capitation method physicians are reimbursed according to the number of patients 

registered.  

The practical exercises are based on a subset of cases whose medical bill is 

reimbursed by either FFS (n=114) or DC (n=155). Note that the sample and (hence 

the results) have been deliberately changed from the published paper.   

For each method the decision problem you should consider is whether DC is cost-

effective compared to FFS for Medicaid patients with severe mental health illness.  

The dataset is provided in the zip folder emailed to your previously.   

We also provide an e-copy of these notes in this subfolder that you can copy and 

paste commands from. 

Please note that while these data have been anonymised, permission for their 

use is only for educational purposes. Under no circumstances should they be 

used for research or other purposes. 

Variable description for dataset  

Variable name Description 

Id Study id 

Key Baseline measures  
W1paid Cost prior to intervention, continuous 

W1qaly QALY prior to intervention, continuous 

W1schiz Schizophrenia, 1=yes; 0=no 

W1bipolar Bipolar, 1=yes; 0=no 

W1age Age (continuous) 

W1male 0=women; 1=men 

W1highcost Previously high cost (0=no; 1=yes) 

W1lowcost Previously low cost (0=no; 1=yes) 

                                                           
1Grieve et al. 2008. “Evaluation of health care programs by combining cost with quality of life 
measures: a case study comparing capitation and fee for services.” Health Services Research 
43(4):1204-22. 
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W1use Previously used any service (0=no; 1=yes) 

W1nonwhite Ethnicity, 1= white, 0=other 

W1phs Physical health at baseline, continuous 

W1mhs Mental health at baseline, continuous 

W1gf Global functioning at baseline, continuous 

age2 Age squared 

age3 Age cubed 

priorcost2 W1paid squared 

priorcost3 W1paid cubed 

priorqaly2 W1qaly squared 

priorqaly3 W1qaly cubed 

Key outcomes  
totalcost Total discounted cost in first and second follow-up period 

totalqaly Total discounted QALY in first and second follow-up period 

Treatment variable  
treated Treatment indicator =0 for FFS, 1 for DC  
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Part 1: Propensity score matching with R 

 

In this exercise, we will perform propensity score matching in R using the Matching 

package.  

Aim of the exercise 

 Learn how to estimate a propensity score in R 

 Consider how to assess the specification of the propensity score by checking 

covariate balance, using a broad range of balance statistics 

 

Before opening R, copy the data file notforprofit2013.dta and save it in your 

own drive (e.g., desktop or external drive). Also save the R script from the same folder, 

named Practical.R.   Using this script will make it easier for you to type some 

longer commands. 

Now open R and change the working directory to your own drive (e.g., home directory 

or external drive) using for example the following command: 

setwd("H:/Myname/Myfolder/") 

(tip: in R, the file path contains a forward slash / not a backward slash like for 

example in Stata!). 

Alternatively, you can manually set your working directory by going into the main R 

menu and choosing File > Change dir. 

You can open the script for the R code by going to: File-> Open script and choosing 

the working directory you set previously.  You can modify this script file, or can also 

create your own script file by choosing File > New script.  

First, you need to ensure that the packages, “rgenoud”  and “Matching” are 

installed before loading them. This can be done using the drop-down menu 

Packages > Install packages in R. To do this, you need to be connected to the 

internet, select a local “mirror”, and look for the packages “rgenoud ” and 

“Matching”. It would be good to do this in advance of the short course (tip: in 

R, the choice of lower versus upper case DOES matter!). 
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Step 1: Read the data in R 

Read the data (in Stata format) notforprofit2013.dta into the data frame, 

 

dta3 <- read.dta(file = "notforprofit2013.dta") 

dta3 <- as.data.frame(dta3) 

 

 and load the necessary libraries: 

library(foreign) 

library(boot) 

library(rgenoud) 

library(Matching)  

Before starting the propensity score matching, you can familiarise yourself with the 

requisite matching function, using the help page in R. Type the following: 

?Match() 

 

Step 2: Estimate the propensity score 

Estimate the propensity score using a logistic regression. For now, we will add 

potential confounders as linear terms. If you have time later, you can play around with 

making the model more flexible, for example by adding nonlinear terms.  

pscore <- glm(treated ~ W1male + W1nonwhite + W1highcost + W1lowcost 

+ W1schiz + W1bipolar+ W1age + W1qaly + W1paid + W1phs + W1mhs + 

W1gf + W1use, data = dta3, binomial(link = "logit")) 

 

You can inspect the propensity score model by typing 

summary(pscore) 

 

Save the linear predictor of treatment assignment using the code  

 pscore_est <- predict(pscore, data = dta3) 
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Append the predicted linear predictor of the propensity score (pscore_est) to the 

existing variables in the data set (dta3): 

dta3<- cbind(dta3, pscore_est) 

 

and remove the object pscore_est, so that we don’t have duplicated objects (one 

inside, and one outside of the dataframe dta3). 

rm(pscore_est) 

 

 

Step 3: Perform propensity score matching 

Before conducting 1 to 1 nearest-neighbour propensity score matching with 

replacement (default option), remember to attach your data frame (attach(dta3)). 

This enables us to refer to a variable in the dataset by simply giving their name, e.g. 

“treated”. (Alternatively, you can refer to the object as dta3$treated, and you don’t 

need to attach).  

The syntax for propensity score matching is: 

attach(dta3) 

m_ps1 <- Match(Tr = treated, X = pscore_est, estimand="ATT") 

detach(dta3) 

Remember to detach the dataset using detach(dta3).  

 

Step 4: Assess balance 

To assess the balance on covariates before and after matching both formal statistical 

tests and graphical tools can be used.  

The function MatchBalance allows us to check if the results of Match have achieved 

balance on covariates by calculating four different sets of balance statistics.  We would 

like to assess the balance on the following confounders: W1age, W1qaly, W1paid, 

W1nonwhite, W1schiz and W1bipolar.  

The syntax for MatchBalance is: 

set.seed(1122) 
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mb_ps1 <-MatchBalance(treated ~ W1age + W1qaly + W1paid + W1nonwhite 

+ W1schiz + W1bipolar, match.out = m_ps1, data = dta3, nboots = 500) 

 

Note that we set the seed prior to MatchBalance in order to obtain the exact same 

results every time MatchBalance is used. nboots is the number of bootstrap 

samples to be run. Bootstrapping is highly recommended because the bootstrapped 

Kolmogorov-Smirnov (KS) test provides correct coverage even when the distributions 

being compared are not continuous. At least 500 nboots are recommended for 

publication quality p-values. If you set nboots to zero then bootstrap resampling is 

not undertaken. 

Which covariates are imbalanced before matching? Which after matching? Compare 

the p-value for the t-test with that for the KS test for W1qaly. What do you notice? 

The QQ plot is a graphical aid that can be used to compare the distribution of a 

potential confounder variable between the control and the treatment group. 

Empirical-QQ (eQQ) plots of W1qaly before and after matching can be produced by 

using the qqplot function in the following way: 

attach(dta3) 

qqplot(W1qaly[treated==0], W1qaly[treated==1]) 

detach(dta3) 

 

However to get nicer plots we can use some options as shown below: 

attach(dta3) 

par(mfrow = c(1,2), las=2, oma=c(8,0.5,8,0.5)) 

qqplot(W1qaly[treated==0], W1qaly[treated==1], main="Before 

matching", ylab = "Treatment observations", xlab="Control 

observations", ylim=c(min(W1qaly[treated==1], 

W1qaly[m_ps1$index.treated]), max(W1qaly[treated==1], 

W1qaly[m_ps1$index.treated])),xlim=c(min(W1qaly[treated==0], 

W1qaly[m_ps1$index.control]), max(W1qaly[treated==0], 

W1qaly[m_ps1$index.control]))) 

abline(coef=c(0,1)) 

 

qqplot(W1qaly[m_ps1$index.control], W1qaly[m_ps1$index.treated], 

main="After matching", ylab="Treatment observations", xlab="Control 

observations", ylim=c(min(W1qaly[treated==1], 
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W1qaly[m_ps1$index.treated]), max(W1qaly[dta3$treated==1], 

W1qaly[m_ps1$index.treated])),xlim=c(min(W1qaly[treated==0], 

W1qaly[m_ps1$index.control]), max(W1qaly[treated==0], 

W1qaly[m_ps1$index.control]))) 

abline(coef=c(0,1)) 

detach(dta3) 

 

Note that par(mfrow = c(1,2), las = 2, oma=c(8,0.5,8,0.5)) allows us 

to have 1x2 pictures on one plot.  With ylim and xlim we make sure that the plots 

before and after matching, are on the same scale. 

Assess the balance for the squared and cubed terms of W1qaly (priorqaly2 and 

priorqaly3) by including them in MatchBalance. What do you conclude? 

 

Step 5: Estimate the ATT 

Only once the covariate balance post matching has been judged sufficient, should 

the estimated ATT be reported.  

To estimate the ATT for totalcost after matching on the propensity score with 

non-linear terms, the code is:  

attach(dta3) 

m_ps_cost <- Match(Y=totalcost, Tr=treated, X=pscore_est, 

estimand="ATT") 

summary(m_ps_cost, full=TRUE) 

detach(dta3) 

Now modify the above code to estimate the ATT for the same matched dataset for 

totalqaly. 

 

Step 6: Save and store the matched dataset 

This part of code allows you to save and store the matched data: 

match.ps.data <- rbind(dta3[m_ps1$index.treated,], 

dta3[m_ps1$index.control,]) 

match.ps.data <- cbind(match.ps.data, weights=c(m_ps1$weights, 

m_ps1$weights)) 
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match.ps.data <- cbind(match.ps.data, 

matchid=c(1:length(m_ps1$index.treated),1:length(m_ps1$index.control

))) 

write.table(match.ps.data, file = "match.ps.data.csv", sep = ",", 

col.names = NA, na="NA", qmethod = "double")  

 

Note: The vectors index.treated and index.control store the original 

observation number for the treated and control observation, in each matched pair. 

An easy way to inspect the matched pairs is by binding these vectors together, with 

the weight attached to each pair.  

matchedpairs=cbind(m_ps1$index.treated 

,m_ps1$index.control,m_ps1$weights) 

Now type head(matchedpairs) to see the first elements of the vector, and 

dim(matchedpairs) to check the dimensions of the matched data. 

Notice that this dataset is longer (165 rows) than the number of treated observations 

in the original dataset (n=155). The reason for this is that for certain treated 

observations, more than one control observation can be matched, because they 

have the same Pscore (tie). In this case, the default option in the Matching package 

is not to break the tie, but to create more than one matched pairs. For example, the 

1st (treated) observation is matched with the 97th and 144th (control) observations, 

and both matched pairs are stored with a weight of 0.5.    

You can verify that the weights add up to the original number of treated 

observations, by typing: 

sum(m_ps1$weights) 

You can check how many of the original 114 control observations have been used in 

the matching process, by typing: 

length(unique(m_ps1$index.control)) 

 

You may want to save the output of the propensity score matching so that later 

you can compare it to the Genetic Matching results. An easy way to do this is 

by simply copying the text output, as well as the generated plots into a Word 

document.  

You can also save the R script file by moving the cursor to the “R editor” 

window, and selecting File menu > Save as. 
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Part 2: Genetic Matching with R 

In this exercise we will perform multivariate matching in R by using the Genetic 

Matching algorithm, incorporated in the R package Matching. 

Aim of the exercise 

 Learn how to define those  potential confounders we wish to achieve balance 

on (BalanceMatrix); 

 Perform Genetic Matching (GenMatch); 

 Learn how to perform multivariate matching on potential confounders (X 

matrix) (Match); 

 Check covariate balance and compare the balance achieved with that from 

propensity score matching; 

 Estimate the treatment effects (point estimates and 95% CI), after Genetic 

Matching. 

By the end of the exercise you should be able to perform Genetic Matching and 

interpret the results. 

 

Step 1 Load data and libraries, estimate Pscore as before 

Make sure that the dataset and the Matching(),  foreign()and rgenoud() and 

boot() libraries are loaded, as described previously.   We will use the previously 

estimated propensity score, pscore_est so make sure you re-create it and add it to 

the dataset. (The script Practical.R repeats these steps.) 

Before implementing GenMatch, you can familiarise yourself with the function, using 

the help page. Type the following: 

?GenMatch() 

Step 2: Specify the X and BalanceMatrix matrices  

Include in the X matrix the estimated linear predictor (pscore_est) obtained in 

Part 1, and the following covariates: W1male, W1nonwhite, W1highcost, 

W1lowcost, W1schiz, W1bipolar, W1use, W1age, W1qaly, W1paid, 

W1phs, W1mhs, W1gf.  

attach(dta3) 

X <-cbind(pscore_est, W1male, W1nonwhite, W1highcost, W1lowcost, 

W1schiz, W1bipolar, W1use, W1age, W1qaly, W1paid, W1phs, W1mhs, 

W1gf)  
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For now, we include the same variables in the balance matrix as in the X matrix.  

BalanceMatrix <- X 

As we will later see, this does not have to be the case: the BalanceMatrix needs to 

include terms we think are the most important to achieve good balance on.  (Note: do 

not use “detach” yet, as we carry on using the dataset in the next step.) 

Step 3: Perform Genetic Matching and assess covariate balance 

We first perform Genetic Matching, to obtain the Weight.matrix, which will then be 

used in the multivariate matching to calculate distance between the matched pairs. 

This step is the computationally intensive part of Genetic Matching. Call the function 

GenMatch and save the output in the object gen1: 

gen1 <- GenMatch(Tr = treated, X = X, BalanceMatrix = BalanceMatrix, 

pop.size = 500, unif.seed=2233, int.seed=2233) 

Note that we set the seed inside the function GenMatch in order to obtain the exact 

same results every time GenMatch is used. While the recommended population size 

(pop.size) is at least 1000, in order to keep computation time short, we set it to 500. 

With this dataset, the algorithm will take less than two minutes to run. 

In order to obtain the matched data, we perform the multivariate matching, using the 

X matrix and the weights, obtained from the previous step. Again, we save the output 

of the matching in an object, m_gm1. When calling this function, we need to reference 

the output object of Genetic Matching (gen1), previously stored.  

m_gm1 <- Match(Tr = treated, X = X, Weight.matrix = gen1, estimand = 

"ATT") 

Don’t forget to detach the data: 

detach(dta3) 

Note that the syntax for matching is the same as that used in the propensity score 

matching, the only new element is the weight matrix (Weight.matrix). While the 

GenMatch part calculated the weights (hence used more programming time), the 

Match part created the matched datasets and calculated the treatment effects. 

Assess the balance on covariates before and after matching by using the function 

MatchBalance: 

set.seed(1122) 

mb_gm1 <- MatchBalance(treated ~ W1age + W1qaly + W1paid + 

W1nonwhite + W1schiz + W1bipolar, match.out=m_gm1, data=dta3, 

nboots=500) 
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Compare these results with those obtained with the propensity score matching in Part 

1. What do you conclude?  

  

Now use the qqplot function to visually assess the balance achieved on W1qaly:  

par(mfrow = c(1,2), oma=c(8,0.5,8,0.5)) 

attach(dta3) 

qqplot(W1qaly[treated==0], W1qaly[treated==1], main="Before 

matching", ylab = "Treatment observations", xlab="Control 

observations", 

ylim=c(min(W1qaly[treated==1],W1qaly[m_gm1$index.treated]), 

max(W1qaly[treated==1], W1qaly[m_gm1$index.treated])), 

xlim=c(min(W1qaly[treated==0], W1qaly[m_gm1$index.control]), 

max(W1qaly[treated==0], W1qaly[m_gm1$index.control]))) 

abline(coef=c(0,1)) 

 

qqplot(W1qaly[m_gm1$index.control],W1qaly[m_gm1$index.treated], 

main="After matching", ylab="Treatment observations", xlab="Control 

observations", 

ylim=c(min(W1qaly[treated==1],W1qaly[m_gm1$index.treated]), 

max(W1qaly[treated==1], W1qaly[m_gm1$index.treated])), 

xlim=c(min(W1qaly[treated==0],W1qaly[m_gm1$index.control]), 

max(W1qaly[treated==0], W1qaly[m_gm1$index.control]))) 

abline(coef=c(0,1)) 

detach(dta3) 

 

Compare these plots with those obtained with the propensity score matching. What do 

you conclude?  

 

To assess the balance on the squared and cubed terms of W1qaly, add 

priorqaly2 and priorqaly3 in MatchBalance. Then compare the KS test and 

t-test for these non-linear terms with those of W1qaly. What do you notice?  

 

Step 4: Estimate the ATT 

Now we use the matched data obtained in the last step, and estimate the ATT.   
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attach(dta3) 

m_gm1_cost <- Match(Y= totalcost,Tr=treated, X=X, Weight.matrix = 

gen1, estimand = "ATT") 

summary(m_gm1_cost) 

detach(dta3) 

Modify the above code to estimate the treatment effect for totalqaly. 

 

Step 5: Save and store the matched dataset 

This part of code allows you to save and store the matched data: 

match.gn.data <- rbind(dta3[m_gm1$index.treated,], 

dta3[m_gm1$index.control,]) 

match.gn.data <- cbind(match.gn.data, weights=c(m_gm1$weights, 

m_gm1$weights)) 

match.gn.data <- cbind(match.gn.data, 

matchid=c(1:length(m_gm1$index.treated),1:length(m_gm1$index.control

))) 

write.table(match.gn.data, file = "match.gn.data.csv", sep = ",", 

col.names = NA, na="NA", qmethod = "double")  

 

You’re done! If you have time, think through any further analyses that you think are 

warranted. 


