Lecture 4 # **Extensions** ### **Extension 1: advanced matching methods** - Covariate-balancing propensity score (Imai and Ratkovic, 2014) - Estimates Pscore to explicitly maximise balance - Entropy balancing (Hainmueller and Xu, 2014) - Reweighting to maximise balance - Machine learning approaches to pscore estimation (Lee et al 2010) - Cardinality matching (Resa and Zubizarreta, 2016): - Maximises matched sample given balance constraints - Near/far matching (Baiocchi et al. 2012) - Combines instrumental variables and matching ### **Extension 2: Sensitivity analysis:** ### Considering the no unobserved confounding assumption - Choices driven by 'the science' not statistical significance - Theory, causal diagrams, empirics, experts can all help - Good design is crucial: a rich set of measured covariates (Rubin 2007) - Placebo tests (Jones 2007) - Sensitivity analysis - How strong does the unobserved confounding need to be, to invalidate conclusions? (Rosenbaum 2002) ### Considering unmeasured confounding: example Noah et al, 2011, JAMA - Extracorporeal membrane oxygenation (ECMO) vs no ECMO - H1N1, severe acute respiratory distress syndrome - Matched cohort design for reducing selection bias - Estimated relative risk of ECMO on mortality 0.47 (p=0.001) - Sensitivity analysis to test robustness - Assumes unmeasured confounder, perfect correlation mortality - How large would relative prevalence of unobserved confounder in treatment versus controls need to be to change conclusions? - To conclude "no effect", confounder would have to be relatively prevalent in ECMO vs no ECMO arm; odds ratio > 1.8 - Highly imbalanced observed confounder; odds ratio=1.3 CARING FOR THE RETICALLY ILL PATIENT ### ONLINE FI Referral to an Extracorporeal Membrane Oxygenation Center and Mortality Among Patients With Severe 2009 Influenza A(H1N1) | Moronke A. Noah, MBCS | Context: Extracroprised membrane suggestation (ECMO) can support gas ex-
change in patients with viewer exist responsing detents spectrum (ARDD), builts not
have greated controversal. (EAON support support patients with ARDD during the
2009 influenza ARHTM) partients.
Objectives compare the hospital installary of patients with HTML -initiated ARDS in-
lened, accepted, and transferred for (CAND with matched patients who were not re-
ferred to ECAD.) | |--------------------------------|--| | Gles J. Peek, FIXES (CTh), MD | | | Sinon J. Finney, FRCA, PhD | | | Mark J. Criffiths, MIXCP, PhD | | | David A. Harrison, PhD | | | Richard Grieve, PhD | | | M. Zia Sadique, PhD | Design, Setting, and Patients. A cohort couly in which ICAD inferred potents was
relinfeed as all patients with IATS indeed Acid Was were referred. Logorist, and trans-
tered bit 1 of the 4 and IECAD centers in the Unbell Kingsom during the HHID parties in writer 2009-2010. The ICAD-Period patients and when CHAD-Period college patients are reconstructed using data from a concurrent, foreign during color trady
patients were mututed using data from a concurrent, foreign darked control trady. Find
Partings, which data from a processing was proposed or confirmed HHID Designed
graphs, physiological, and consortably data were used in 3 different mutuality lackship. | | Jacjeet S, Seldon, PhD | | | Daniel E. McAuley, EBCP, MD | | | Richard K. Firmin, FRCS | | | Christopher Harvey, MIRCS | | | Jereny J. Cordingley, FRCA, MD | | | Susanu Price, MRCP, PhD | Main Outcome Measure Survival to hospital discharge analyzed according to the infantion. In that principle. | | | | # **Extension 3: Population-adjusted indirect comparisons** - What if IPD available for one comparator, published data from other? - For "anchored" indirect comparisons, can use propensity score methods - Matching-adjusted indirect comparisons (MAIC) (IPW) (Signorovitch et al) - To minimise bias must balance all prognostic variables that modify effect - http://scharr.dept.shef.ac.uk/nicedsu/wpcontent/uploads/sites/7/2017/05/Population-adjustment-TSD-FINAL.pdf - See also Hartman et al 2010! ### **Extension 4: Time-varying treatments** - Interventions often administered over multiple time periods - Clinicians update treatment decisions based on new prognostic information ### **Example 1: crossover in oncology trials** - Statistical adjustment to re-create control group with no access to treatment (Morden et al. 2011, Latimer et al., Ishak et al. 2014) - Eg. Inverse probability of treatment weighting ### **Extension 4: Time-varying treatments** - Interest in evaluating the consequences of whole treatment sequences - Dynamic treatment regimes (adaptive treatment, multi-stage treatment strategy) ### **Example 2: treatment of chronic conditions** - Biological drugs in rheumatoid arthritis: What is the optimal sequence? - "Big data" can be used to emulate randomised trials (Hernan and Robins, 2016) - Methods available to estimate "optimal" treatment sequences using patient-level data (e.g. inverse probability of treatment weighting, gestimation) - Strong assumption: "sequential randomisation" ### References - Noah M et al (2011). Extracorporeal membrane oxygenation for severe respiratory failure secondary to H1N1 Influenza A: a case-matched study. JAMA 206(15):1659-68. - Signorovitch JE, et al. (2012) Matching-adjusted indirect comparisons: a new tool for timely comparative effectiveness research. *Value in Health*. 2012 Oct 31;15(6):940-7. - Hartman E et al. From sample average treatment effect to population average treatment effect on the treated: combining experimental with observational studies to estimate population treatment effects. Journal of the Royal Statistical Society: Series A (Statistics in Society). 2015 Jun 1;178(3):757-78 - Latimer NR, et al. (2014) NICE DSU Technical Support Document 16: Adjusting survival time estimates in the presence of treatment switching. School of Health and Related Research, University of Sheffield, Sheffield, UK. 2014 Jul:b12. - Hernán MA, Robins JM. Using big data to emulate a target trial when a randomized trial is not available. American journal of epidemiology. 2016 Mar 18;183(8):758-64. ### **Summary** - Impetus on RWE presents massive opportunities for HTA - Big data and good design are necessary but insufficient - Require analytical methods make realistic assumptions - Matching methods reduce reliance on model specification - Important to assess unobserved confounding - 'Precision medicine' requires flexible analytical methods - estimate effects relevant individual patients - to evaluate dynamic treatment regimens