

## Lecture 4

# **Extensions**

### **Extension 1: advanced matching methods**



- Covariate-balancing propensity score (Imai and Ratkovic, 2014)
  - Estimates Pscore to explicitly maximise balance
- Entropy balancing (Hainmueller and Xu, 2014)
  - Reweighting to maximise balance
- Machine learning approaches to pscore estimation (Lee et al 2010)
- Cardinality matching (Resa and Zubizarreta, 2016):
  - Maximises matched sample given balance constraints
- Near/far matching (Baiocchi et al. 2012)
  - Combines instrumental variables and matching

### **Extension 2: Sensitivity analysis:**

### Considering the no unobserved confounding assumption



- Choices driven by 'the science' not statistical significance
- Theory, causal diagrams, empirics, experts can all help
- Good design is crucial: a rich set of measured covariates (Rubin 2007)
- Placebo tests (Jones 2007)
- Sensitivity analysis
- How strong does the unobserved confounding need to be, to invalidate conclusions? (Rosenbaum 2002)

### Considering unmeasured confounding: example

Noah et al, 2011, JAMA



- Extracorporeal membrane oxygenation (ECMO) vs no ECMO
- H1N1, severe acute respiratory distress syndrome
- Matched cohort design for reducing selection bias
- Estimated relative risk of ECMO on mortality 0.47 (p=0.001)
- Sensitivity analysis to test robustness
  - Assumes unmeasured confounder, perfect correlation mortality
  - How large would relative prevalence of unobserved confounder in treatment versus controls need to be to change conclusions?
  - To conclude "no effect", confounder would have to be relatively prevalent in ECMO vs no ECMO arm; odds ratio > 1.8
  - Highly imbalanced observed confounder; odds ratio=1.3

CARING FOR THE RETICALLY ILL PATIENT

### ONLINE FI

Referral to an Extracorporeal Membrane Oxygenation Center and Mortality Among Patients With Severe 2009 Influenza A(H1N1)

| Moronke A. Noah, MBCS          | Context: Extracroprised membrane suggestation (ECMO) can support gas ex-<br>change in patients with viewer exist responsing detents spectrum (ARDD), builts not<br>have greated controversal. (EAON support support patients with ARDD during the<br>2009 influenza ARHTM) partients.<br>Objectives compare the hospital installary of patients with HTML -initiated ARDS in-<br>lened, accepted, and transferred for (CAND with matched patients who were not re-<br>ferred to ECAD.)                                                                                                                                                                                                                     |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gles J. Peek, FIXES (CTh), MD  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sinon J. Finney, FRCA, PhD     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Mark J. Criffiths, MIXCP, PhD  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| David A. Harrison, PhD         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Richard Grieve, PhD            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| M. Zia Sadique, PhD            | Design, Setting, and Patients. A cohort couly in which ICAD inferred potents was<br>relinfeed as all patients with IATS indeed Acid Was were referred. Logorist, and trans-<br>tered bit 1 of the 4 and IECAD centers in the Unbell Kingsom during the HHID parties in writer 2009-2010. The ICAD-Period patients and when CHAD-Period college patients are reconstructed using data from a concurrent, foreign during color trady<br>patients were mututed using data from a concurrent, foreign darked control trady. Find<br>Partings, which data from a processing was proposed or confirmed HHID Designed<br>graphs, physiological, and consortably data were used in 3 different mutuality lackship. |
| Jacjeet S, Seldon, PhD         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Daniel E. McAuley, EBCP, MD    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Richard K. Firmin, FRCS        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Christopher Harvey, MIRCS      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Jereny J. Cordingley, FRCA, MD |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Susanu Price, MRCP, PhD        | Main Outcome Measure Survival to hospital discharge analyzed according to the infantion. In that principle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

# **Extension 3: Population-adjusted indirect comparisons**



- What if IPD available for one comparator, published data from other?
- For "anchored" indirect comparisons, can use propensity score methods
- Matching-adjusted indirect comparisons (MAIC) (IPW) (Signorovitch et al)
- To minimise bias must balance all prognostic variables that modify effect
- http://scharr.dept.shef.ac.uk/nicedsu/wpcontent/uploads/sites/7/2017/05/Population-adjustment-TSD-FINAL.pdf
- See also Hartman et al 2010!

### **Extension 4: Time-varying treatments**



- Interventions often administered over multiple time periods
- Clinicians update treatment decisions based on new prognostic information

### **Example 1: crossover in oncology trials**

- Statistical adjustment to re-create control group with no access to treatment (Morden et al. 2011, Latimer et al., Ishak et al. 2014)
- Eg. Inverse probability of treatment weighting

### **Extension 4: Time-varying treatments**



- Interest in evaluating the consequences of whole treatment sequences
- Dynamic treatment regimes (adaptive treatment, multi-stage treatment strategy)

### **Example 2: treatment of chronic conditions**

- Biological drugs in rheumatoid arthritis: What is the optimal sequence?
- "Big data" can be used to emulate randomised trials (Hernan and Robins, 2016)
- Methods available to estimate "optimal" treatment sequences using patient-level data (e.g. inverse probability of treatment weighting, gestimation)
- Strong assumption: "sequential randomisation"

### References



- Noah M et al (2011). Extracorporeal membrane oxygenation for severe respiratory failure secondary to H1N1 Influenza A: a case-matched study. JAMA 206(15):1659-68.
- Signorovitch JE, et al. (2012) Matching-adjusted indirect comparisons: a new tool for timely comparative effectiveness research. *Value in Health*. 2012 Oct 31;15(6):940-7.
- Hartman E et al. From sample average treatment effect to population average treatment effect on the treated: combining experimental with observational studies to estimate population treatment effects. Journal of the Royal Statistical Society: Series A (Statistics in Society). 2015 Jun 1;178(3):757-78
- Latimer NR, et al. (2014) NICE DSU Technical Support Document 16: Adjusting survival time estimates in the presence of treatment switching. School of Health and Related Research, University of Sheffield, Sheffield, UK. 2014 Jul:b12.
- Hernán MA, Robins JM. Using big data to emulate a target trial when a randomized trial is not available. American journal of epidemiology. 2016 Mar 18;183(8):758-64.

### **Summary**



- Impetus on RWE presents massive opportunities for HTA
- Big data and good design are necessary but insufficient
- Require analytical methods make realistic assumptions
- Matching methods reduce reliance on model specification
- Important to assess unobserved confounding
- 'Precision medicine' requires flexible analytical methods
  - estimate effects relevant individual patients
  - to evaluate dynamic treatment regimens