

### Lecture 2

Quantitative methods for addressing selection bias due to confounding

#### **Content**



- Causal inference, purpose, motivation
- Propensity score matching
- Genetic matching
- Sensitivity analyses
- Latest developments

#### Statistical Methods for addressing confounding



- Causal Framework and estimands
- Assume no unobserved confounding
  - Regression adjustment
  - Matching methods
    - Propensity score matching
    - Genetic Matching
- Allow for observed and unobserved confounding:
  - Instrumental variable estimation
  - Regression discontinuity design
  - Sensitivity analysis for unobserved confounding

# Problem of causal inference (Rubin 1977, Holland 1986)



- $T_i$  is treatment indicator: 1 treatment group, 0 control
- Interested in causal relationship between  $T_i$  and  $Y_i$
- Each individual, *i* faces potential outcomes  $Y_{i0}$  and  $Y_{i1}$  under control and treated states
- Ideally observe treatment effect for each individual  $\tau_i = Y_{i1} Y_{i0}$
- BUT cannot observe both outcomes
- Objective of methods: impute missing potential outcome

#### Which estimand?



#### Which population are we interested in?

- Average treatment effect (ATE):
  - Characteristics of treated and controls
- Average treatment effect for treated (ATT)

| i | Т | Y <sub>0</sub> | Y <sub>1</sub> | Y <sub>1</sub> -Y <sub>0</sub> |
|---|---|----------------|----------------|--------------------------------|
| 1 | 1 |                | 8              |                                |
| 2 | 1 |                | 4              |                                |
| 3 | 1 |                | 8              |                                |
| 4 | 0 | 8              |                |                                |
| 5 | 0 | 10             |                |                                |
| 6 | 0 | 7              |                |                                |

#### Which estimand?



#### Which population are we interested in?

- Average treatment effect (ATE):
  - Characteristics of treated and controls
- Average treatment effect for treated (ATT)

| i | Т | Y <sub>0</sub> | Y <sub>1</sub> | Y <sub>1</sub> -Y <sub>0</sub> |
|---|---|----------------|----------------|--------------------------------|
| 1 | 1 | 5              | 8              | 3                              |
| 2 | 1 | 3              | 4              | 1                              |
| 3 | 1 | 6              | 8              | 2                              |
| 4 | 0 | 8              | 9              | 1                              |
| 5 | 0 | 10             | 10             | 0                              |
| 6 | 0 | 7              | 6              | -1                             |

#### Which estimand?



#### Which population are we interested in?

- Average treatment effect (ATE):
  - Characteristics of treated and controls
- Average treatment effect for treated (ATT)

| i | Т | Y <sub>0</sub> | Y <sub>1</sub> | Y <sub>1</sub> -Y <sub>0</sub> |          |
|---|---|----------------|----------------|--------------------------------|----------|
| 1 | 1 | 5              | 8              | 3                              |          |
| 2 | 1 | 3              | 4              | 1                              | ├ ATT= 2 |
| 3 | 1 | 6              | 8              | 2                              | ATE= 1   |
| 4 | 0 | 8              | 9              | 1                              | > AIL- I |
| 5 | 0 | 10             | 10             | 0                              |          |
| 6 | 0 | 7              | 6              | -1                             |          |

#### Regression for average treatment effects



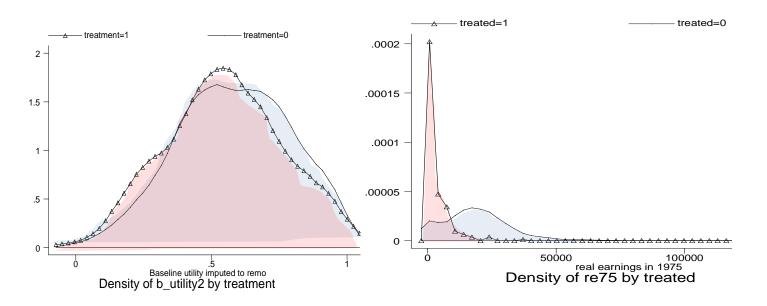
Want to estimate incremental cost-effectiveness INTEREST: effect of treatment on mean costs, QALYs

- Regression controls for observed covariates through modelling the outcome
- Estimates regression model for the mean outcome E[Y|T,X]
  - E.g.  $E[Y|T,X] = \beta_1 T + X_1 \beta_2 + X_1^2 \beta_3$
- Predicts both potential outcomes for each individual

  - $\hat{Y}_{i0}$  as  $E[Y_i | T = 0, X_i]$   $\hat{Y}_{i1}$  as  $E[Y_i | T = 1, X_i]$
- Estimates ATT (ATE) average prediction differences among treated (everyone)



#### Regression challenge: overlap

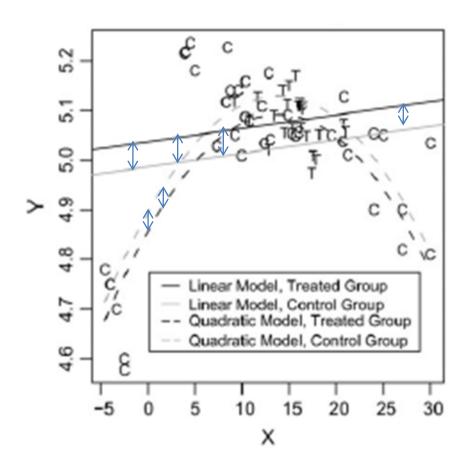


**good overlap**: Baseline utility

weak overlap
Baseline earnings:

# Example: weak overlap, sensitivity to functional form





linear model: treatment effect 0.05

quadratic model: treatment effect of -0.04

Source: Ho et al. 2007

#### **Matching: motivation**



- Regression correct functional form never known
- Incorrect relationship: parameter to endpoint
- Or treatment effect multiplicative not additive
- Biased and inconsistent estimates
- Especially severe when weak overlap (Ho et al. 2007)
- Regression involves extrapolation
- Endpoint variable always in sight

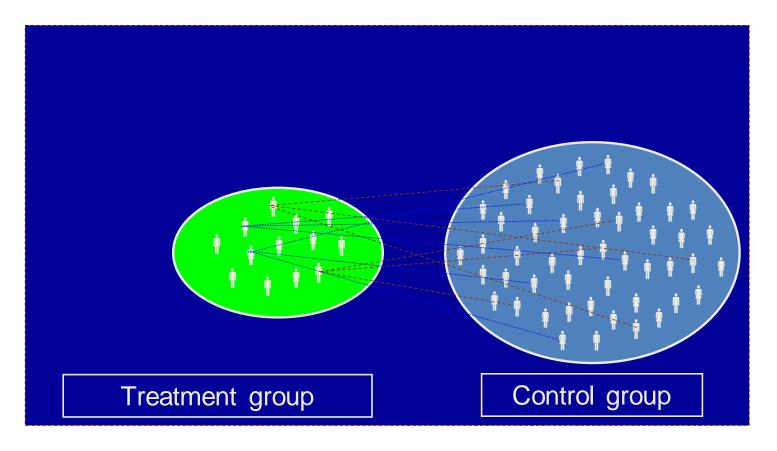
#### Matching (Stuart 2010)



- AIM: ensure groups are balanced
- Covariates similar between treatment and control groups
  - Means, but also variances et
  - RCT similar baseline covariate distributions
- Imputes missing potential outcome by finding a "similar" individual from control group according to observed characteristics
- Key assumptions
  - 1. No unobserved confounders
  - -2. Covariates overlap between groups  $0 < Pr(T_i=1|x_i) < 1$

#### Intuition behind matching, e.g. for ATT





Require matching method that achieves **best balance** in observed characteristics x<sub>i</sub> between treatment and control groups

#### **Pscore: background**



- Most non-parametric way match exactly on x
- Only feasible if very few, discrete confounders
- Reduce dimensionality with Pscore methods
- Rosenbaum and Rubin, Biometrika 1983
- Google Scholar citations: n=20,157 as of May, 15<sup>th</sup>, 2018
- Key result: Pscore is a balancing score
  - Sufficient to 'control' for true Pscore only
  - Matching, subclassification, adjustment, weighting
- Matching performs relatively well (Austin 2009)

#### **Pscore: estimation**



$$e(X_i) = \Pr(T_i = 1 \mid X_i)$$

- Model of the probability of treatment, given observed covariates
- Choice of treatment depends on patient, clinician choice
- Matching Pscore can unbiased estimate ATT (Rosenbaum and Rubin 1983)
- If Pscore is correctly specified
  - Pscore generally unknown, must be estimated
  - How do we get correct functional form?
  - Balance can be directly assessed, shows if Pscore is specified correctly
  - Assess balance post matching, modify accordingly
  - Achieving balance on many terms is challenging...

#### **Pscore matching: key stages**



- Define target population, estimand of interest (ATT, ATC, ATE)
- Define 'treatment' and 'control' groups
- Assess overlap and if required redefine target population
- Estimate the Pscore
- Check balance, re-estimate the Pscore
- Extract matched data, and estimate treatment effects
- Sensitivity analyses (e.g. regression on matched data)

# Assessing overlap

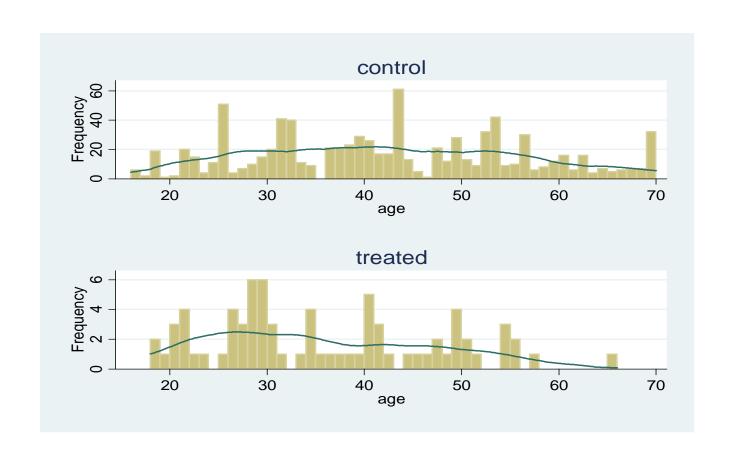


- Describe each covariate, treatment versus control
  - e.g. Histograms for continuous variables
- Remedy, apply explicit exclusion criteria
- Excluded from pop. of interest for decision problem
- Can look at distribution of Pscore
- Could drop observations don't overlap on Pscore
- Unclear then what is being estimated
- Instead consider individual covariates
- Make exclusions explicit, helps interpretation

## Examples assessing overlap

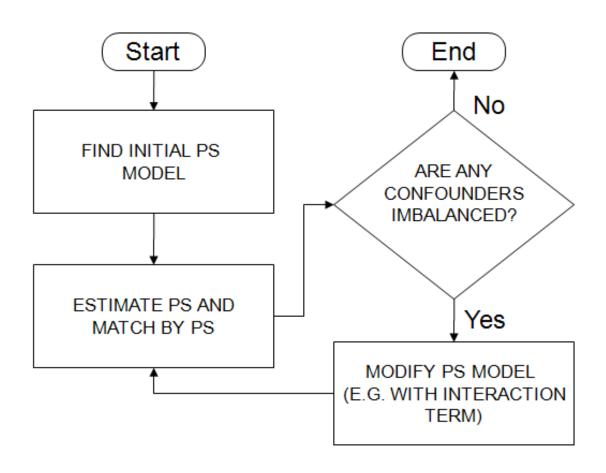
# H1N1: ECMO treatment versus control Noah et al, JAMA 2012





#### **Iterative process for specifying the Pscore**





#### **Assessment of balance**

See Austin (2009)

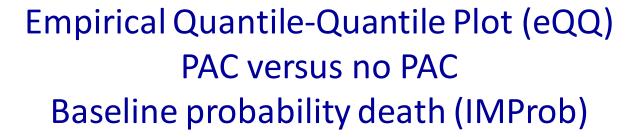


- Should not use standard t-tests
- Considering means necessary but insufficient
- Appropriate balance measures:
  - sample size invariant
  - consider moments of the distribution beyond mean
- Standardised differences- means divided by pooled SD
- Quantile-Quantile plots (continuous variables)
- P values from non-parametric tests

## The importance of checking balance

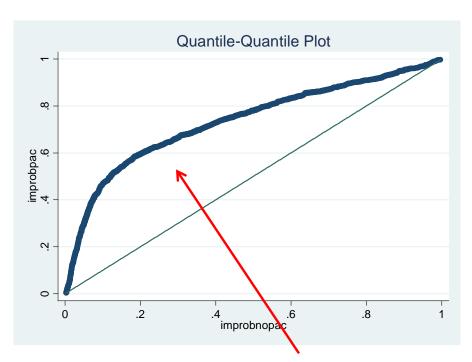


- Pulmonary artery catheterization (PAC)
- Invasive monitoring device used in ICU
- Observational study using Pscore
- PAC higher mortality & cost vs. No PAC (Connors 1996)
- PAC use declined subsequently
- Further observational study undertaken by Harvey et al, 2005,
- Critical care data from ICNARC (1052 PACs, 32,000 no PACs)
- 65 baseline covariates
- Later re-visited by Sekhon and Grieve 2012





#### before Pscore matching



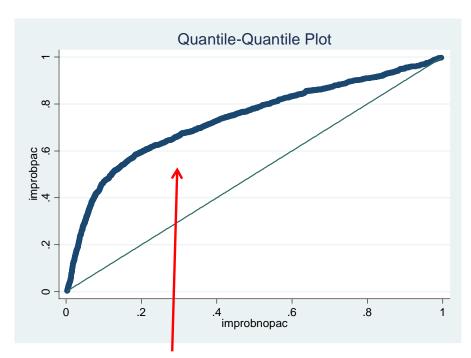
Want the gap to be small

i.e linked p value to be large

# Empirical Quantile-Quantile Plot (eQQ) PAC versus no PAC Baseline probability death (IMProb)



#### before Pscore matching



Want the gap to be small

i.e linked p value to be large

# after Pscore matching 0.2 0.0 0.4 0.8 1.0

no-PAC

Means balanced

9.0

0.4

0.2

0.0

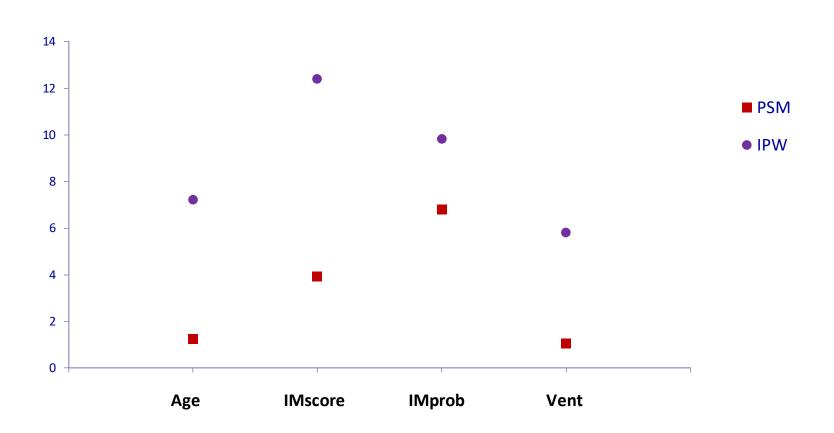
#### **IPW** estimator



- Propensity score: p(X) = Pr(T = 1 | X)
- Inverse probability of treatment weighting (IPW) for the ATE: reweighting treated with  $\frac{T_i}{\hat{p}(X_i)}$  and control sample with  $\frac{1-T_i}{1-\hat{p}(X_i)}$
- Theory: if Pscore correct, unbiased + most efficient way to use PS
- Poor overlap -> close to 0 or 1 -> extreme weights -> bias, inefficiency
- Can be combined with regression, in double-robust models (e.g. Bang and Robins, 2005 Biometrics)
- Can allow for time varying treatments (e.g. Marginal structural models, Hernán et al., 2000 Epidemiology)

# Xigris for severe sepsis: subgroup with 3-5 organ failures Covariate balance PSM vs IPW

#### **Standardized differences**



## **Summary: pscore methods**



- Fundamental to define the target population
- Pscore less reliant correct specification outcome regression model.
- Challenge correct Pscore model
- Vital to report full range of balance statistics
- Poor balance pscore matching, consider other pscore approaches
- Inverse probability weighting (IPW) and double-robust estimation appealing alternatives especially with dynamic treatment regimes (see for example Vander Laan and Robins, 2007)
- For now consider other matching alternatives..

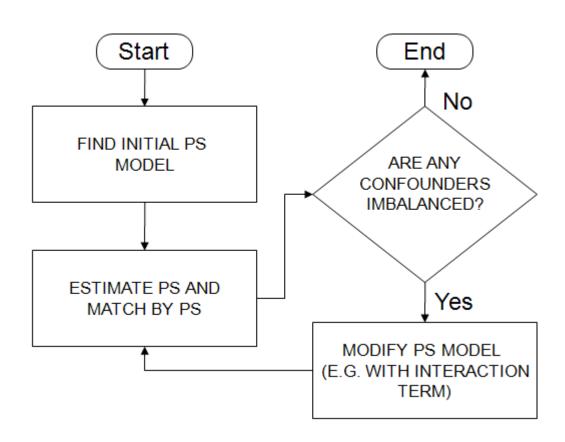
## **Genetic Matching (GenMatch)**



- Methods so far assume correct model specification
- Difficult to specify correct Pscore i.e. balance covariates
- In many evaluation settings covariates often non-normal
- Genetic Matching: automated search algorithm maximises balance
- Follows principle recommended by Rosenbaum and Rubin (1985)
- Recommendations for Pscore ignored (Austin 2008)
  - Follow iterative process of balance checking
  - In addition, match on underlying covariates
- Can give less bias (Diamond and Sekhon 2010; Sekhon and Grieve 2011, Radice et al., 2011, Kreif et al. 2012)

#### Iterative process for pscore specification





GenMatch

MOTIVATION 1: Automates cumbersome iteration process

MOTIVATION 2: Focuses on balancing covariates

### What is GenMatch?

#### see Sekhon (2011)



- Aim: max balance between treatment and controls
- Automated search algorithm maximises balance
- Algorithm searches data for 'best' matches
- Repeatedly checks balance, then improves balance
- Automated not manual balance checking
- Can match with Pscore and covariates
- Maximise balance on most important confounders
- As recommended by original developers of Pscore (Rosenbaum and Rubin 1985)

## Multivariate distance matching

WICAL ME

See Glance et al. (2007)

- GenMatch extends other multivariate matching
- Common matching metric Mahalanobis distance (MD):

$$md(X_i, X_i) = \{ (X_i - X_i) ' S^{-1} (X_i - X_i) \}^{1/2}$$

- $X_i$  and  $X_i$  vector of covariates for 2 different observations;
- S is sample covariance matrix of X
- Minimise multivariate distance metric for each matched pair -> may not result in optimal balance in matched sample
- Weight according to sample covariance
- Performs badly when covariates are non-normal

### GenMatch: Multivariate matching

(see Sekhon 2011, Sekhon and Grieve, 2011, Noah et al, 2011, Pennington et al, 2013, Sadique et al, 2011, Kreif et al, 2012; Radice et al, 2012; Ramsahai et al, 2011)



- GenMatch generalises Mahalanobis distance measure
- $GMD(X_i, X_j) = \{ (X_i X_j)' (S^{-1/2})' W S^{-1/2}(X_i X_j) \}^{1/2}$ 
  - $X_i$  and  $X_j$  vector of covariates for 2 different observations;
  - S is sample covariance matrix of X
  - **W** is a weight matrix
- Considers many alternative sets of weights
- A genetic algorithm searches data to pick the weights W
- Picks those weights that maximise overall covariate balance
- Creates matched dataset using optimal weights

#### **GenMatch: Key Stages**



- Specify variables want to match on (X matrix)
- Specify variables vital to balance (balance matrix)

THIS DECISION IS KEY. MUST INLUDE ALL CONFOUNDERS VITAL TO BALANCE. THE CHOICE IS NOT AUTOMATED BUT IS A JUDGEMENT BY THE ANALYST. MUST CONSIDER A PRIORI REASONING, PREVIOUS LITERATURE. THE CHOICE OF VARIABLES TO MATCH MUST BE ACCORDING TO THOSE **JUDGED** VITAL TO BALANCE.

- Choose balance statistics (e.g. t-tests, KS statistics)
- Specify matching options (e.g. 1 to 1, replacement)
- Ask Genetic Matching to optimise balance

#### **Choosing matching options**

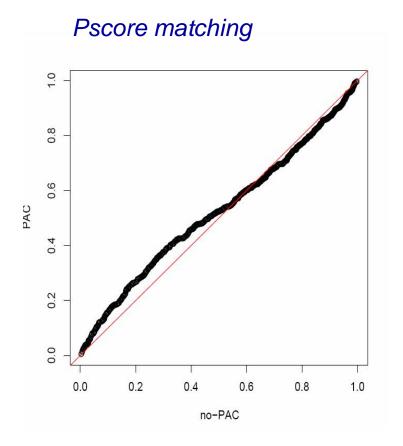


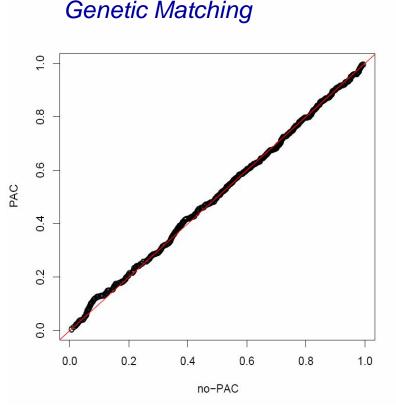
General choices (all matching methods)

- Matching with versus without replacement
- Matching 1:1 versus 1: n (Austin, 2010)
- Least bias option is 1:1 with replacement (Stuart, 2010)
- "Abadie & Imbens standard errors" allow for dependencies within the matched data (Abadie and Imbens, 2006)
- Inference is conditional on the matched data (Ho et al 2007)



Baseline Probability Death (IMProb) PAC vs. No PAC







# Incremental net benefit (INB) PAC vs. No PAC

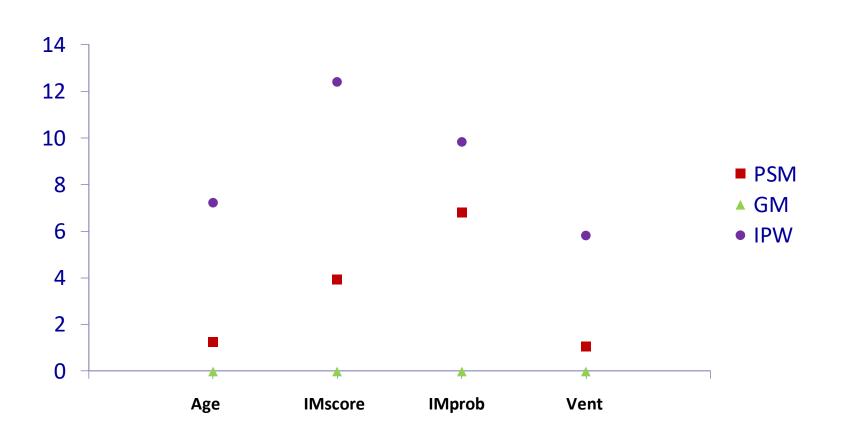
|                 | INB (95% CI)                    |
|-----------------|---------------------------------|
| Pscore matching | -£27,215 (-£38,864 to -£14,154) |
| GenMatch        | -£11,830 (-£24,960 to £834)     |
| RCT             | -£3,089 (-£19,234 to £13,265)   |

 $\lambda$ =£30,000 per QALY

Cls calculated with non-parametric bootstrap

# Xigris for severe sepsis: subgroup with 3-5 organ factors Covariate balance PSM vs IPW vs GM

#### **Standardized differences**



# Xigris for severe sepsis, subgroup with 3-5 organ for Cost-effectiveness results

|                     | Using subgroup specific PS<br>mean (95% CI)* |                            |                                 |  |
|---------------------|----------------------------------------------|----------------------------|---------------------------------|--|
|                     | Inc cost                                     | Inc QALY                   | INB**                           |  |
| Genetic<br>Matching | 19,948<br>(17,610 to 22,286)                 | 1.28<br>(0.86 to 1.70)     | <b>5,690</b> (-2,543 to 13,924) |  |
| IPW                 | 19,023<br>(15,636 to 22,102)                 | 0.542<br>(-0.66 to 1.55)   | -8,175<br>(-31,787 to 11,845)   |  |
| Pscore matching     | 19,384<br>(17,696 to 21,071)                 | <b>0.98</b> (0.65 to 1.33) | 391<br>(-6,350 to 7,133)        |  |

<sup>\*</sup>Non-parametric bootstrap CI

<sup>\*\*</sup>INB at £20,000 per QALY

# GenMatch steps



see Sekhon (2011)

- 1. Specify the covariates to match on
  - X <- cbind(age,sex,Improb,bloodpr)</pre>
  - can include the Pscore
- 2. Specify the terms to balance

BalanceMatrix<-cbind(age,sex,Improb,bloodpr)</pre>

- can be identical to X
- 3. Set GenMatch options
- 4. Call GenMatch (computational time)

# GenMatch options



see Help for more options and details

- The population size: number of 'trials' i.e. possible sets of weights within each 'run' or generation
- Larger can be better for balance, 1000 is reasonable: pop.size=1000
- The number of generations: the number of 'runs' again larger can be better, controlled with
  - wait.generations and max.generations

# Obtaining balance from GenMatch



 Have to first call Match() to extract the Genmatch matched dataset

```
mgen1 <- Match(Tr = pac, X = X, weight.matrix=gen1)</pre>
```

Then use these matched datasets to get balance statistics

```
mb_GM <-MatchBalance(pac ~ IMprob match.out = mgen1, data=
    pacdata, nboots=500)</pre>
```

# Estimating treatment effects



- Not until satisfied with balance achieved
- Report estimand of interest e.g. ATT
- mean differences in say costs for treated,

```
m_gml_cost<-Match(Y= totalcost,Tr=treated, X=X, Weight.matrix =
   gen1, estimand = "ATT")
summary(m_gml_cost)</pre>
```

- Inference allow for joint distribution costs and outcomes
- use non-parametric bootstrap to report uncertainty
- Report inference conditional on matched data

# What if, I can't get good balance?



- GenMatch maximise balance according to the loss function
- Will improve worst balance of variables in balance matrix
- Can customise loss function according to problem
- For example, prioritise variables according to previous literature, expert opinion, or insights from DAGs
- Ramsahai et al. 2011, drew on expert opinion to define 'high priority'; 'medium priority' and 'low priority' variables.
- Wrote customised loss function, to maximise balance

## Matching alone, and in combination



- Balance is key
- Advantages combining matching with regression (Adabie and Imbens 2011)
- Performs at least as well as double robust estimation (Kreif et al 2014)
- Machine learning methods for treatment effect estimation (Kreif et al SMMR 2014)
- Throughout, overarching design cross sectional data
- Assumed no unobserved confounding...

#### **Conclusions**



- Causal inference framework requires analyst to define estimand and assumptions
- Matching methods, can be flexible according to causal question, and reduce reliance on parametric assumptions
- Essential define causal assumptions, sensitivity analyses.
- Don't rely on a single method
- Matching methods offer advantage of simplicity, transparency
- Recent extensions broaden range of settings, and offer useful ways of combining matching with regression + other approaches.

## References



- Rosenbaum, P. R. and D. B. Rubin (1983). The central role of the propensity score in observational studies for causal effects. *Biometrika* 70(1): 41-55.
- Austin PC (2009). The relative ability of different propensity score methods to balance measured covariates between treated and untreated subjects in observational studies. *Med Decis Making*. 29(6):661-77. doi: 10.1177/0272989X09341755.
- Stuart, E. A. (2010). Matching Methods for Causal Inference: A review and a look forward. Statistical Science 25(1).
- Kreif, N., et al (2012). Methods for estimating subgroup effects in cost-effectiveness analyses that use observational data *Medical Decision Making*, 32(6):750-63.
- Diamond, A. & Sekhon, J. S. 2013. Genetic Matching for Estimating Causal Effects: A General Multivariate Matching Method for Achieving Balance in Observational Studies. Review of Economics and Statistics. 95(3): 932-945
- Sekhon, J. S. 2011. Matching: multivariate and propensity score matching with automated balance search. Journal of Statistical Software. 42(7)
- Sekhon, J. S. & Grieve, R. 2011. A Matching Method for Improving Covariate Balance in Cost-Effectiveness Analyses. Health Economics 21(6):695-714
- Kreif N et al. (2014). Regression-adjusted matching and double-robust methods for estimating average treatment effects in health economic evaluation. Health Services and Outcomes Research Methodology 13 (2-4), 174-202, 2013.