Technology adoption in health care

Pedro Pita Barros

Universidade Nova de Lisboa and CEPR

ppbarros@fe.unl.pt

and

Xavier Martinez-Giralt

Universitat Autònoma de Barcelona and MOVE

xavier.martinez.giralt@uab.eu

Introduction

Motivation

- General consensus: tech develop primer driver HC expenses → adoption;
- New techs spread with different rhythms in HC sector → diffusion

Literature

- Empirical literature: Vast documentation of impact of innovation on HC expenditure
- Theoretical literature: very scarce

Aim of the paper

Provide a theoretical model to study the role of reimbursement systems on the rate of technology adoption by providers in HC.

Our model: General overview

Elements of the model

- model of uncertain demand
- technological shift driven by the increased benefit for patients, financial variables, and the reimbursement system to providers.

Objective: assess the impact of the payment system to providers on the rate of technology adoption.

Payment schemes:

- Cost reimbursement according to the cost of treating patients,
- DRG payment system where the new technology may or may not be reimbursed differently from the old technology.

DRG: patient class. system relating types of patients (given by common demographic and therapeutical attributes) to costs incurred by hospital.

Our model: Conclusions

Role of patients' benefits

- CR&DRGhom: large enough patient benefits are necessary for adoption to occur
- DRGhet: with discriminatory reimbursement, adoption may occur even in the absence of patients' benefits

CR vs. DRG [Illustration]

 λ : het DRG reimb; Δ : Pat Bfts; η : altruism; β : cost sharing

Notation and assumptions

- Semi-altruistic hospital $W(V(R), B) = V(R) + \eta B$
 - valuation of net revenues: $V(\cdot), V'(\cdot) > 0, V''(\cdot) < 0$
 - valuation of patients' benefits (B)
- **Population of individuals:** q^*
- Uncertain number of patients to treat q; $F(q), f(q) \in [0, q^*]$
- Hospital 2 tech: new, old
 - new tech
 - $oldsymbol{\wp}$ capacity $ar{q}$ patients
 - cost per unit of capacity p
 - ullet marginal cost per patient treated heta
 - old tech
 - treats remaining $q \bar{q}$ (when positive)
 - marginal cost per patient treated c
 - $p+\theta>c$ [new tech not cost saver; driver of cost inflation]

Notation and assumptions (2)

- Hospital reimbursement R: prospective, retrospective, mixed
- 2 payment systems
 - total cost reimb; partial cost reimb; fixed fee/capitation
 - DRG
- patients' benefits
 - new tech: b; old tech: \hat{b} ; $\Delta \equiv b \hat{b}$
 - $b > \hat{b}; \ b > p + \theta; \ \hat{b} > c$
- new tech approval [HTA]: $\Delta > p + \theta c > 0$
- ullet Hospital's W: financial results + patients' benefits
 - Financial: profits from patients treated with new & old tech
 - Benefits: benefits to patients treated with new & old tech
- ullet Hospital's problem: choice of ar q to $\max W$

Tech Adoption under cost reimbursement

Cost reimbursement system

$$R = \alpha + \beta TC,$$
 $\alpha > 0, \beta \in [0, 1]$

Total cost

$$TC = \begin{cases} p\bar{q} + \theta q & \text{if } q \leq \bar{q} \\ p\bar{q} + \theta\bar{q} + c(q - \bar{q}) & \text{if } q > \bar{q} \end{cases}$$

Proposition

- Full adoption is never optimal for the provider.
- Patients' benefits above a threshold ensure positive adoption for every level of reimbursement.

Intuition

Assumption $p + \theta > c$ and common reimbursement for both technologies yield that patients' benefits are Nc for adoption.

Welfare analysis

w.r.t α and β

Higher R ($\uparrow \alpha, \beta$) lead to higher \bar{q} because \uparrow patients' benefits (Δ) are assumed to offset \uparrow mg cost ($p + \theta - c$) [HTA] w.r.t dR = 0

- Trade-off between α and β with risk aversion dR = 0, and totally differentiating f.o.c. yield ambiguous result. Depend on properties of $V(\cdot)$. BUT \neq hospitals, \neq properties of $V(\cdot)$. Issue behind difficulties to interpret empirical work on tech adoption.
- Trade-off between α and β with risk neutrality dR = 0, and totally differentiating f.o.c. $\uparrow \beta$ induces $\uparrow \bar{q}$ but $\downarrow \alpha$. No impact on welfare: \uparrow patient's benefits, \downarrow hosp. surplus.

w.r.t dS = 0 (risk neutrality)

 $(\uparrow \alpha, \beta) \Rightarrow \uparrow \overline{q} \Rightarrow \uparrow W \text{ from Pat Bfts}$

Tech Adoption under DRG payment

Types of DRG reimbursement

Homogenous DRG reimbursement:

Hospital receives same reimbursement under both technologies, i.e. technology used does not change DRG

$$R = Kq$$

Heterogenous DRG reimbursement:

New technology leads to coding sickness in a different DRG, and receives different reimbursement.

$$R = \begin{cases} K_1 q & \text{if new tech} \\ K_2 q & \text{if old tech} \end{cases}$$

with $K_1 > K_2$, and $\lambda \equiv K_1 - K_2$.

Tech Adoption under DRG payment (2)

Homogenous DRG payment.

- Full adoption is never optimal for the provider.
- Patients' benefits above a threshold necessary for adoption.
- ullet \bar{q} indep of K. Decision driven by cost minimization.
- \bullet $\frac{\partial^2 W}{\partial \bar{q} \partial K} > 0 \to V$ concave; otherwise no impact.

Heterogenous DRG payment.

- Full adoption is never optimal for the provider.
- Assumption $(K_1 K_2) (p + \theta c) > 0$ sufficient (not necessary) for adoption even under absence of patients' benefits.
- Large enough patients' benefits necessary for adoption (but not sufficient).

Comparing payment regimes

Assume $V'(\cdot)=1$, unif. distr., $q^*=1$, $\lambda\equiv K_1-K_2$, and $\Delta\equiv b-\hat{b}$.

$$\bar{q}_{hom}^{drg} < \bar{q}_{het}^{dgr}$$

$$\bar{q}_{hom}^{drg} < \bar{q}^{cr}$$

$$\bar{q}^{cr} \lessgtr \bar{q}_{het}^{drg}$$

Vindication of CR against prospective reimbursement.

Welfare analysis

- Question: Over- or Under-adoption w.r.t. 1st best?
- Assume $V'(\cdot) = 1$, uniform distribution, $q^* = 1$.
- ullet Define SW = benefits-costs
- Cost reimb: $\bar{q}^{cr} > \bar{q}^{swcr}$ (over-adoption) [provider does not bear full cost of adoption].
- $DRG^{het}: \bar{q}^{het} > \bar{q}^{swhet}$ (over-adoption) [new tech higher reimb].

Caveats

- static model (adoption) vs dynamic model (diffusion),
- no influence from other sectors; no hospital competition,
- hospital no capacity constraints,
- no difficulties for patients and providers to assess health benefits,
- homogeneous patients (health benefits, severity, sickness),
- individuals fully insured.

